- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Om, Kuenzang (2)
-
Bihrle, Matthew B. (1)
-
Cabrera, Eduardo J. (1)
-
Cheng, Philip A (1)
-
Conradi Smith, Gregory D (1)
-
Cooley, Arielle M (1)
-
Cooley, Arielle M. (1)
-
Cutter, Mitchell (1)
-
Davidson, Sarah A. (1)
-
Doe, Casey Q. (1)
-
Eggert, Allison (1)
-
Fournier, Eli B. (1)
-
Gingerich, Ian (1)
-
Lincoln, Calvin N. M. (1)
-
Lonberg, Nikhil (1)
-
Love, Sophia M. (1)
-
Mayer, Spencer D. (1)
-
Moore, Alexandra E. (1)
-
Moore, Virginia H. (1)
-
Posch, Galen (1)
-
- Filter by Editor
-
-
Bomblies, K (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bomblies, K (Ed.)Abstract Much of the visual diversity of angiosperms is due to the frequent evolution of novel pigmentation patterns in flowers. The gene network responsible for anthocyanin pigmentation, in particular, has become a model for investigating how genetic changes give rise to phenotypic innovation. In the monkeyflower genus Mimulus, an evolutionarily recent gain of petal lobe anthocyanin pigmentation in M. luteus var. variegatus was previously mapped to genomic region pla2. Here, we use sequence and expression analysis, followed by transgenic manipulation of gene expression, to identify MYB5a—orthologous to the NEGAN transcriptional activator from M. lewisii—as the gene responsible for the transition to anthocyanin-pigmented petals in M. l. variegatus. In other monkeyflower taxa, MYB5a/NEGAN is part of a reaction-diffusion network that produces semi-repeating spotting patterns, such as the array of spots in the nectar guides of both M. lewisii and M. guttatus. Its co-option for the evolution of an apparently non-patterned trait—the solid petal lobe pigmentation of M. l. variegatus—illustrates how reaction-diffusion can contribute to evolutionary novelty in non-obvious ways. Transcriptome sequencing of a MYB5a RNAi line of M. l. variegatus reveals that this genetically simple change, which we hypothesize to be a regulatory mutation in cis to MYB5a, has cascading effects on gene expression, not only on the enzyme-encoding genes traditionally thought of as the targets of MYB5a but also on all of its known partners in the anthocyanin regulatory network.more » « less
-
Cooley, Arielle M.; Schmitz, Suzanne; Cabrera, Eduardo J.; Cutter, Mitchell; Sheffield, Maxwell; Gingerich, Ian; Thomas, Gabriella; Lincoln, Calvin N. M.; Moore, Virginia H.; Moore, Alexandra E.; et al (, Ecology and Evolution)Abstract Environmental adaptation and species divergence often involve suites of co‐evolving traits. Pigmentation in insects presents a variable, adaptive, and well‐characterized class of phenotypes for which correlations with multiple other traits have been demonstrated. InDrosophila, the pigmentation genesebonyandtanhave pleiotropic effects on flies' response to light, creating the potential for correlated evolution of pigmentation and vision. Here, we investigate differences in light preference within and between two sister species,Drosophila americanaandD. novamexicana, which differ in pigmentation in part because of evolution atebonyandtanand occupy environments that differ in many variables including solar radiation. We hypothesized that lighter pigmentation would be correlated with a greater preference for environmental light and tested this hypothesis using a habitat choice experiment. In a first set of experiments, using males ofD. novamexicanaline N14 andD. americanaline A00, the light‐bodiedD. novamexicanawas found slightly but significantly more often thanD. americanain the light habitat. A second experiment, which included additional lines and females as well as males, failed to find any significant difference betweenD. novamexicana‐N14 andD. americana‐A00. Additionally, the other dark line ofD. americana(A04) was found in the light habitat more often than the light‐bodiedD. novamexicana‐N14, in contrast to our predictions. However, the lightest line ofD. americana, A01, was found substantially and significantly more often in the light habitat than the two darker lines ofD. americana, thus providing partial support for our hypothesis. Finally, across all four lines, females were found more often in the light habitat than their more darkly pigmented male counterparts. Additional replication is needed to corroborate these findings and evaluate conflicting results, with the consistent effect of sex within and between species providing an especially intriguing avenue for further research.more » « less
An official website of the United States government
